IV B.Tech II Semester Regular/Supplementary Examinations, April - 2015 DIGITAL SIGNAL PROCESSING

(Electrical and Electronics Engineering)
Time: $\mathbf{3}$ hours
Max. Marks: 75

Answer any FIVE Questions
 All Questions carry equal marks

1 a) Find the frequency response of the given system $y[n]-3 y[n-1]+5 y[n-2]=x[n]-x[n-1]$ Plot the magnitude response.
b) Explain about Linearity, causality and time invariance properties of a system.

2 a) Determine the DFT of the sample data sequence $x(n)=\{1,1,2,2,1,1\}$ and the corresponding amplitude and phase spectrum.
b) State and prove circular shift property of DFT.

3 a) Explain DIF-FFT algorithm for an 8-point sequence.
b) Compute DFT of the following sequence $x(n)=\cos (n \pi / 2) ; N=4$ using DIT- FFT algorithm.

4 a) Find the system function $\mathrm{H}(\mathrm{z})$ and give the corresponding ROC for the system given by $y[n]+0.5 y[n-1]=x[n]+0.25 x[n-1]$
b) What are the advantages and applications of Z-transform?

5 a) Design high pass butterworth filter using bilinear transformation using following specifications.
$\mathrm{f}_{\mathrm{p}}=350 \mathrm{~Hz}, \mathrm{f}_{\mathrm{s}}=1250 \mathrm{~Hz}, \alpha_{\mathrm{p}}=-3 \mathrm{~dB}, \alpha_{\mathrm{s}}=-10 \mathrm{~dB}$, sampling frequency $\mathrm{Fs}=5000 \mathrm{~Hz}$.
b) What is the importance of digital filters in DSP? Give some applications.

6 a) Design an Ideal filter with a frequency response
$H_{d}\left(e^{j w}\right)=\left\{\begin{array}{l}e^{-j \alpha w} ;|w| \leq \frac{\pi}{6} \\ 0 ; \frac{\pi}{6} \leq|w| \leq \pi\end{array}\right.$
Using Hamming window for $\mathrm{N}=13$.
b) Compare IIR and FIR filters.

7 a) Explain the process of interpolation by a factor I of a discrete time signal and draw its spectrum.
b) What are the advantages and applications of multirate sampling?

8 a) Give the bus structure of TMS 320C5X processor and also explain pipelining concept.
b) Write short notes on:
i) Harvard architecture
ii) Multiply and accumulate unit

IV B.Tech II Semester Regular/Supplementary Examinations, April - 2015 DIGITAL SIGNAL PROCESSING

(Electrical and Electronics Engineering)
Time: 3 hours
Max. Marks: 75

Answer any FIVE Questions
 All Questions carry equal marks

1 a) Find the impulse response of the following system whose difference equation is given by

$$
\begin{equation*}
y[n]=y[n-1]+0.5 y[n-2]+x[n]+x[n-1] \tag{8}
\end{equation*}
$$

b) What is meant by BIBO stability and check for BIBO stability of the above system?

2 a) Perform the linear convolution using DFT for the sequences $\mathrm{x}(\mathrm{n})=\{1,-1 .-1\}$ and $h(n)=\{1,2,3\}$.
b) State and prove time shifting and symmetry properties of DFS.

3 a) Determine the DFT of $x(n)=\{2,1,4,6,5,8,3,9\}$ using decimation-in-frequency FFT algorithm.
b) Explain DIT-FFT algorithm for a 4-point sequence and give advantages of FFT.

4 a) Find the system function $\mathrm{H}(\mathrm{z})$ and give the corresponding ROC for the system given by $y[n]+0.25 y[n-1]=x[n]+0.5 x[n-1]$.
b) What are the advantages and applications of Z-transform?

5 a) Design a chebyshev HPF using bilinear transformation using following specifications. $\mathrm{w}_{\mathrm{p}}=0.2 \pi \mathrm{rad} / \mathrm{sec}, \mathrm{w}_{\mathrm{s}}=0.01 \pi \mathrm{rad} / \mathrm{sec}, \alpha_{\mathrm{p}}=-1 \mathrm{~dB}, \alpha_{\mathrm{s}}=-10 \mathrm{~dB}$.
b) Obtain the digital filter transfer function using impulse invariance method and the differential equation $H(s)=1 /(s+1)$.

6 a) Design a low pass filter with pass band gain of unity, cutoff frequency of 1000 Hz and working at a sampling frequency of 5 KHz using a rectangular window. The length of the impulse response should be 7 .
b) Define Linear phase, Group delay and Phase delay?

7 a) What is meant by multistage approach and give the design procedure for Multirate conversion?
b) Show that the transpose of a factor-of-M decimator is a factor-of-M interpolator if the transpose of a factor-of-M down sampler is a factor-of-M -upsampler.

8 a) List the features of TMS 320C5X processor and explain special addressing modes of TMS 320C5X processor.
b) Explain modified bus structures and memory access schemes in DSPs.

Set No. 3

IV B.Tech II Semester Regular/Supplementary Examinations, April - 2015

 DIGITAL SIGNAL PROCESSING(Electrical and Electronics Engineering)
Time: 3 hours
Max. Marks: 75

Answer any FIVE Questions
 All Questions carry equal marks

1 a) Find the step response of the following system whose difference equation is given by

$$
\begin{equation*}
y[n]=y[n-1]+0.5 y[n-2]+x[n]+x[n-1] \tag{8}
\end{equation*}
$$

b) Check for the Time invariance and causality of the given systems

$$
\begin{equation*}
(i) y(n)=x(2 n) \quad(i i) y(n)=x(n+1)+2 x(n) \tag{7}
\end{equation*}
$$

2 a) Determine the eight point DFT of the signal $x(n)=\{1,1,1,1,1,0,0,0\}$ and sketch its magnitude and phase.
b) State and prove circular frequency shift property of DFT.

3 a) Determine the DFT of $x(n)=\{3,1,1,4,4,1,1,3\}$ using decimation-in-time FFT algorithm.
b) Describe In-place computation and bit reversal order with an example.

4 a) Draw the cascade and parallel form block diagram for a LTI system

$$
H(z)=\frac{1}{\left(1+\frac{1}{6} z^{-1}\right)\left(1-\frac{1}{9} z^{-1}\right)}
$$

b) Define ROC and state properties of ROC?

5 a) Design a Butterworth high pass filter satisfying the following specifications. $\mathrm{f}_{\mathrm{p}}=0.32 \mathrm{~K} \mathrm{~Hz}, \mathrm{f}_{\mathrm{s}}=0.16 \mathrm{~K} \mathrm{~Hz}, \alpha_{\mathrm{p}}=0.5 \mathrm{~dB}, \alpha_{\mathrm{s}}=30 \mathrm{~dB}, \mathrm{Fs}=1 \mathrm{~K} \mathrm{~Hz}$.
b) Determine $\mathrm{H}(\mathrm{z})$ that results when the bilinear transformation is applied to $\mathrm{H}_{\mathrm{a}}(\mathrm{s})=\frac{s}{s^{2}+0.692 s+0.504}$

6 a) Design an Ideal high pass filter with a frequency response

$$
H_{d}\left(e^{j w}\right)=\left\{\begin{array}{c}
1 ; \frac{\pi}{4} \leq|w| \leq \pi \\
0 ;|w| \leq \frac{\pi}{4}
\end{array}\right.
$$

Using Hanning window for $\mathrm{N}=9$.
b) What is meant by linear phase and how linear phase is achieved in FIR filters?

7 a) Explain the process of interpolation by a factor I of a discrete time signal and draw its spectrum.
b) Explain the advantages of multirate sampling with examples?

8 a) Draw the architecture of TMS 320C5X processor and explain its special features.
b) Give the differences between Von Neumann and Harvard architecture.

IV B.Tech II Semester Regular/Supplementary Examinations, April - 2015
 DIGITAL SIGNAL PROCESSING
 (Electrical and Electronics Engineering)

Time: 3 hours
Max. Marks: 75

Answer any FIVE Questions
 All Questions carry equal marks

1 a) Find the frequency response of the given system
$y[n]-3 y[n-1]+5 y[n-2]=x[n]-x[n-1]$
Plot magnitude response.
b) Check for the Time invariance and stability of the given systems
(i) $y(n)=a x(n)+\mathrm{b} \quad$ (ii) $y(n)=2 x(n)+n x(n+1)$

2 a) Determine the eight point DFT of the signal $\mathrm{x}(\mathrm{n})=\{1,2,1,2,1,2,1,2\}$ and sketch its magnitude and phase.
b) Find convolution of $h(n)=\{1,-3,5\}$ and $x(n)=\{-1,4,7,3,-2,9,10,12,-5,8\}$ using overlap-add method.

3 a) Evaluate the 8-point DFT using DIT-FFT algorithm for the sequence
$X(n)=\left\{\begin{array}{l}1 \text { for }-3 \leq n \leq 3 \\ 0 \text { otherwise }\end{array}\right.$
b) Explain DIF-FFT algorithm for a 4-point sequence and give advantages of FFT.

4 a) Define Z - transform and give the relation between $Z \& S$ Transforms?
b) What is meant by ROC and give some of its properties?

5 a) Design a Chebyshev filter satisfying the following specifications.
$\frac{1}{\sqrt{2}} \leq H_{d}\left(e^{j w}\right) \leq 1$ for $0 \leq w \leq 0.2 \pi$
$0 \leq H_{d}\left(e^{j w}\right) \leq 1$ for $0.5 \pi \leq w \leq \pi$
b) Describe Impulse Invariance method and frequency warping?

6 a) Design an Ideal Low pass filter with a frequency response
$H_{d}\left(e^{j w}\right)=\left\{\begin{array}{l}1 ; \frac{\pi}{2} \geq w \geq-\frac{\pi}{2} \\ 0 ; \pi \geq|w| \geq \frac{-\pi}{2}\end{array}\right.$
Using Hamming window for $\mathrm{N}=9$.
b) Discuss about frequency sampling technique for FIR filter design.

7 a) Explain upsampling and downsampling with neat sketches.
b) Write short notes on: i)Multi rate signal processing and ii) Anti-imaging filter

8 a) What are the addressing modes for TMS3205X DSP Processor? Explain with examples.
b) Write short notes on
i) Multiplier Accumulator (MAC) Unit
ii) Pipelining

